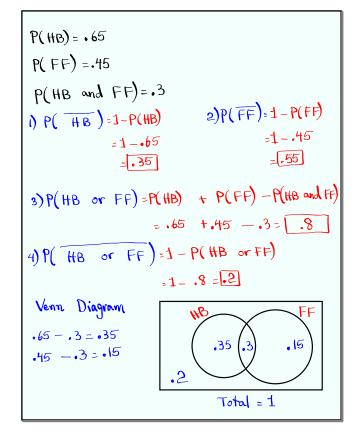
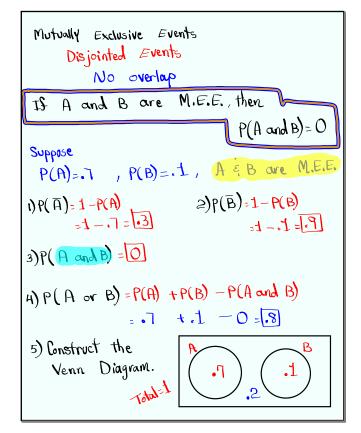


Feb 19-8:47 AM


Some review on Probability
Given
$$P(A) = .4$$

1) write in reduced Fraction
 $P(A) = .4 = \frac{4}{10} = \frac{2}{5}$
2) write in percent notation
 $P(A) = .4(100)/. = \frac{40/.}{100}$
3) Find $P(\overline{A}) = 1 - P(A)$
 $= 1 - .4 = -6$

Mar 12-2:01 PM


Gonsider a standard deck of playing Cards.
52 cards, 26 Red, 12 face cards
IS we randomly select one Card, find
1)
$$P(\text{Red}) = \frac{26}{52} = \frac{1}{2}$$
 a) $P(\text{face}) = \frac{12}{52} = \frac{3}{13}$
3) $P(\text{Red and face}) = \frac{6}{52} = \frac{3}{26}$ 4) $P(\text{Red or face})$
6 face cards are red = $\frac{26 + 12 - 6}{52}$
 $= \frac{32}{52} = \frac{8}{13}$
 $32 = 52 \text{ (MATH)} 1: \text{Frac Enter}$

Addition Rule
Keyword OR
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Single Action Event
 ∞ : $P(A) = .4$, $P(B) = .5$, $P(A \text{ and } B) = .3$
 $P(A) = 1 - P(A)$ $= 2P(B) = 1 - P(B)$
 $= 1 - .4 = .6$ $= 1 - .5 = .5$
 $P(A \text{ and } B) = 1 - P(A \text{ and } B)$
 $= 1 - .3 = .1$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $= .4 + .5 - .3 = .6$

Mar 12-2:13 PM

Mar 12-2:19 PM

Mar 12-2:28 PM

De Morgan's Law
P(
$$\overline{A}$$
 and \overline{B})= P(\overline{A} or \overline{B})
P(\overline{A} or \overline{B})= P(\overline{A} and \overline{B})
Total 1
P(\overline{A} or \overline{B})= P(\overline{A} and \overline{B})= .2
P(\overline{A} and \overline{B})= P(\overline{A} or \overline{B})= 1 - .9 = .1
P(\overline{A} or \overline{B}) = P(\overline{A} and \overline{B})= 1 - .2 = .8